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Abstract:  28 

Toxic metal pollution is ubiquitous in soils, yet its worldwide distribution is unknown. Here we 29 

analyze a global database of soil pollution by arsenic, cadmium, cobalt, chromium, copper, 30 

nickel, and lead at 796,084 sampling points from 1493 regional studies and used machine 31 

learning techniques to map areas with exceedance of agricultural and human health thresholds. 32 

We reveal a previously unrecognized high risk, metal-enriched zone in low-latitude Eurasia, 33 

which is attributed to influential climatic, topographic, and anthropogenic conditions. This 34 

feature can be regarded as a signpost for the Anthropocene era. We show that 14% to 17% of 35 

cropland is affected by toxic metal pollution globally and estimate that between 0.9 and 1.4 36 

billion people live in regions of heightened public health and ecological risks.  37 

One-Sentence Summary:  38 

Global soil pollution with toxic metals and the potential impacts on agriculture and human health 39 

are analyzed using machine learning techniques. 40 

 41 

Main Text:  42 

Soil provides the basis for nearly 95% of food consumed by human beings (1). As the human 43 

population continues to grow and living standards improve, global food production needs to 44 

increase by 35% to 56% by 2050 (2). This puts substantial pressure on non-renewable soil 45 

resources, the degradation of which already threatens the livelihoods of 1.3 billion people 46 

globally (3). The UN Food and Agriculture Organization (FAO) warns that 90% of global soil 47 

resources may be at risk by 2050, due to soil erosion, excessive usage of fertilizers and 48 

pesticides, and industrial pollution (4, 5). Often overlooked in the matter of soil quality is soil 49 

pollution by toxic heavy metals and metalloids (herein toxic metals), which reduces crop yields 50 

and results in unsafe food. While some metals like cobalt (Co) and copper (Cu) are essential in 51 

small amounts for biological functioning, their bioaccumulation in organisms, including crops, 52 

can render them toxic in the human food chain. Furthermore, toxic metals are non-degradable, 53 

and therefore accumulate over decadal time scales in soils (6-8).  54 

 55 

Global soil pollution by toxic metals has been studied for decades (9); however, quantitative 56 

estimates of their impact on soil quality and spatially explicit mapping of soil pollution on a 57 

global scale are lacking. A few regional and country-scale investigations have provided 58 

concerning data on this issue. For instance, a national survey in China found that 19% of 59 

agricultural soils exceeded soil quality standards, with arsenic (As, a metalloid), cadmium (Cd), 60 

Cu, and nickel (Ni) accounting for the majority of exceedances (10). A study on toxic metals 61 

across 27 European countries showed that 28% of soils exceeded thresholds (11).  62 

 63 

There are two main sources of toxic metals in soil: geogenic and anthropogenic. Toxic metals are 64 

ubiquitous in bedrocks, the natural soil parent materials, and occur in varying concentrations. 65 

Some types of parent rock (e.g. basalt, shale) as well as primary minerals (e.g. pyrite, sphalerite) 66 

contain elevated levels of As, Cd, Cu, and Ni, due to the high affinity of sulfur for these metals 67 

(8, 12). During the geologic weathering and soil-forming processes, toxic metals are 68 

continuously released from soil parent materials (13, 14). Some toxic metals may also be 69 

transported in the atmosphere following volcanic emissions and wind erosion and subsequently 70 

deposited in surface soil (13, 15). Due to translocation and transformation mechanisms during 71 

pedogenesis, toxic metals may accumulate in soil due to fixation in crystal lattices, binding with 72 

clay minerals via electrostatic forces, or complexation with organic matter and iron (Fe) 73 
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oxyhydroxides, which can lead to high natural background of toxic metal concentrations in 74 

certain soil environments (12, 16, 17).  75 

 76 

Anthropogenic sources of toxic metals in pedosphere include agricultural, household, and 77 

industrial activities. Significant metal contamination of soils commenced at the beginning of the 78 

Anthropocene (e.g. Bronze age), particularly as a result of metal mining and processing (13, 18). 79 

Mining activities transfer huge quantities of rock, often with high metal concentrations from the 80 

underground to the surface. This leads to soil pollution by leachate and runoff from mining 81 

waste, irrigation of cropland with polluted water, wind-eroded waste rocks, and atmospheric 82 

deposition originating from metal smelters (6, 19). Metal pollution at a given location may be 83 

transported across long distances as evidenced by ice cores recovered from Greenland, which 84 

reveal that intensive mining and smelting activities in the Greek and Roman times caused 85 

pronounced pulse in metal contamination at hemispheric scales (20). Elevated toxic metal 86 

contents are also embedded in industrial infrastructure (machinery, bridges, transport systems, 87 

cables, to buildings), and agricultural and household products (such as phosphorus fertilizers, 88 

paints, and batteries), which can contribute significantly to the toxic metal burden in soil 89 

ecosystems (21).  90 

  91 

The spatial distribution of toxic metals in soil depends on a dynamic and complex balance 92 

between input and output processes. The main output pathways include leaching, soil erosion by 93 

surface runoff, plant uptake and crop harvest (13, 17, 22). Redistribution of toxic metals may 94 

occur in the vertical dimension of soil profiles due to soil-plant interactions. The plant-pump 95 

effect, for instance, transports toxic metals from deeper soil (e.g. C horizons) to surficial soil 96 

(e.g. O horizons), where they accumulate (17). Toxic metals in soil may also migrate at regional 97 

scales due to biovolatization, wind-borne soil suspension, forest fires, and other perturbances 98 

(13, 15). Based on these migration mechanisms, it has been suggested that certain environmental 99 

and socioeconomic factors, including topography, climate, soil texture, and human activities may 100 

be used as predictors to evaluate toxic metal distribution across large spatial scales (11, 23-25).  101 

 102 

The combination of recent developments in machine learning technologies and the availability of 103 

expansive measurement data now make it possible to undertake a systematic assessment of 104 

global soil pollution for seven toxic metals: As, Cd, Co, chromium (Cr), Cu, Ni, and lead (Pb). 105 

We hypothesized that soil pollution, on a global scale, would be governed by both direct and 106 

indirect effects of biogeophysical and anthropogenic factors. Using machine learning models, we 107 

identified and analyzed multi-layered and non-linear relationships, and developed a robust and 108 

spatially explicit, continuous prediction of toxic metal exceedances based on sparsely distributed 109 

global data.  110 

 111 

Global toxic metal exceedances  112 

We have compiled 796,084 datapoints of soil concentrations of the key toxic metals from 1493 113 

regional studies covering diverse climate zones, geologic settings, and land use types (figs. S1 114 

and S2) (26). Data quality assurance procedures were followed to ensure that the data were 115 

reliable and representative of regional metal concentrations, and appropriate analytical methods 116 

were used to ensure robust measurements (26). Samples collected from studies focusing on 117 

contaminated sites were excluded to avoid bias toward highly enriched localized areas. Soil 118 

concentrations in 10 km by 10 km pixels were converted to binary data using a set of agricultural 119 

thresholds (AT) and human health and ecological thresholds (HHET) derived from country 120 
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thresholds (table S1) (26). Five sets of predictive variables, namely climatic, geological, soil 121 

textural, topographic, and socioeconomic, were included as proxies of natural and anthropogenic 122 

processes governing metal abundance in soil. Extremely randomized trees (ERT) was selected as 123 

the best-performing machine learning model (27). The models were validated using an 124 

independent data set, which verified high model precision and accuracy unrelated to numerical 125 

overfitting. The models were then used to project data onto a soil pollution map on a global 126 

scale, excluding any permafrost and desert areas (26).  127 

 128 

Globally, our model estimates that 14% to 17% (95% confidence interval) of surface soils 129 

exceed the AT for at least one toxic metal in cropland areas (Fig. 1). Probabilities of individual 130 

metal exceedance vary geographically (fig S4-S10). The global exceedance rate of Cd is the 131 

highest, reaching 9.0% (-1.9%/+1.5%). Cadmium exceedance for agricultural soil is the most 132 

notable in northern and central India, Pakistan, Bangladesh, southern China, southern parts of 133 

Thailand and Cambodia, Iran, Turkey, Ethiopia, Nigeria, South Africa, Mexico, and Cuba. Both 134 

anthropogenic sources and geogenic enrichment likely contributed to the elevated Cd 135 

concentrations in these regions (6, 8, 28, 29). The exceedance rates of Ni and Cr reach 5.8% (-136 

1.8%/+1.1%) and 3.2% (-0.7%/+1.6%), respectively. Their exceedance is the most prevalent in 137 

Middle-East, subarctic Russia, and eastern Africa, likely due to high geogenic background as 138 

well as mining activities (28, 30). Soil As exceedance occurred at a rate of 1.1% (-139 

0.04%/+0.3%), and was the most notable in southern and southwestern China, south and 140 

Southeast Asia, West Africa, and central parts of South America, which coincide with observed 141 

and predicted areas of high As concentration in groundwater (14). The exceedance rate of Co is 142 

1.1% (-0.1%/+2.9%), and was the most prevalent in Zambia, the Democratic Republic of the 143 

Congo, and Ethiopia, likely due to mining related activities (31). Globally 6.8% (-1.7%/+1.9%) 144 

of surficial soil exceeded HHET, with a similar or smaller exceedance than AT exceedance 145 

owning to generally less stringent threshold values (Fig 2, figs S11-S17).  146 

 147 

Soil pollution by toxic metals has significant impacts on food production and food safety. We 148 

estimate that 242 million ha (-26/+27 million ha), or 16% of global cropland is affected by toxic 149 

metal exceedances. Among the areas most at risk, southern China, northern and central India, 150 

and the mid-East, are well documented to have elevated toxic metal concentrations in their soils 151 

(32-34). Limited data exist for Africa and the prediction will require more soil sampling and 152 

analysis for verification (35).  153 

 154 

By overlaying the human health and ecological risk map over global population distribution in 155 

2020, it is estimated that 0.9-1.4 billion people live in the high-risk areas (Fig 2B). However, it 156 

should be noted that the actual risks posed by soil metals are dependent upon their mobility, 157 

overall bioavailability, and human exposure pathway dynamics (36, 37). Exposure and toxic 158 

effects also depend on individual dietary habits and food deprivation, as well as the degree of co-159 

occurrence of multiple elements (Fig. 2C). Moreover, international trade of food products 160 

originating from high risk countries may lead to a spill-over effect and dispersion of such risks 161 

(Fig. 1D).  162 

 163 

Our study identified a notable high-risk zone in low-latitude Eurasia and across southern Europe, 164 

the mid-East, South Asia, and southern China. This belt coincides with the geographical 165 

distribution of several ancient cultures, including ancient Greek civilizations, the Roman Empire, 166 

Persian culture, ancient India, and Yangtze-river Chinese culture (fig. S25). This inter-167 
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continental “metal-enriched corridor” is attributed to a combination of anthropogenic and 168 

environmental factors (discussed below). Since metals do not degrade, this zone can be regarded 169 

as a keystone indicator of the Anthropocene era.   170 

 171 

 172 

Natural and Anthropogenic Drivers 173 

Several environmental drivers affect the global distribution of toxic metal exceedances. Near-174 

surface temperature, precipitation, and potential evapotranspiration have the strongest positive 175 

effects (38), likely contributing to relatively high metal exceedance in southern China, India, 176 

mid-East, Central America, and Central Africa. Such conditions accelerate the weathering 177 

processes that release metals from soil parent materials and enhance the enrichment of metals in 178 

clay minerals and iron- or aluminum-oxides (22). In contrast, the frequency of ground frosts and 179 

wet day frequencies show the strongest negative effects (38). This may be due to weak 180 

weathering-induced influx and strong leaching-related efflux of metals (39), as well as weak 181 

plant-pump effects limiting vertical enrichment (17). The subtropical monsoon climate zones, 182 

which are important for global agriculture, tend to be hot and humid despite the dry season. This 183 

climate zone has a metal exceedance rate of 34% (-5%/+4%) for the AT, significantly higher 184 

than the global average of 16% (-2%/+2%). In contrast, the metal exceedance rate in the cold and 185 

humid hemi-boreal climate zone is much lower at 6.0% (-2.4%/+5.5%) (Fig. 3B).  We also found 186 

that high elevation and steep slope landscapes correspond to more prevalent metal exceedance 187 

(Fig. 3E-G) owing to the topography affecting rock weathering, soil formation and erosion, and 188 

therefore influencing the leaching and accumulation of metals (40-42). In mountainous areas 189 

with a low percentage of flat areas and high percentage of steep slopes, the metal exceedance 190 

rate is 15% (-4%/+2%) for HHET and 29% (-1%/+3%) for AT, nearly twice the global averages.  191 

 192 

Socioeconomic factors are also important drivers governing global toxic metal distribution 193 

patterns. Proxies of mining intensity, as identified by ore/metal exports, mineral rents, mineral 194 

depletion, and ores/metal imports, were the strongest socioeconomic predictors of toxic metal 195 

exceedances, highlighting the major contribution of mining and smelting on metal accumulation 196 

in soils at a global scale (6, 43, 44). The proportion of irrigated land was also found to be a 197 

strong predictor of metal exceedance, consistent with previous reports that irrigation water 198 

contaminated by industrial activities can cause widespread contamination of agricultural soils (6, 199 

8, 19). In areas with intensive mining activities and a high percentage of surface irrigation (Fig. 200 

3I-L), the metal exceedance rate was 17% (-5%/+4%) for HHET and 36% (-7%/+4%) for AT, 201 

more than twice the global average. Although irrigation with groundwater extracted from 202 

arsenic-bearing aquifers in the region south of Himalayas resulted in hot spots of As in soils (8), 203 

in general, the use of groundwater for irrigation is a strong predictor of toxic metal non-204 

exceedance on a global scale. This suggests that groundwater may generally contain lower levels 205 

of toxic metals than other irrigation water sources, thus serving as a carrier of metal efflux rather 206 

than influx, except in areas with high geogenic background or serious anthropogenic pollution 207 

(45). 208 

 209 

We used structural equation models (SEM) to assess the causal links between irrigation, mining, 210 

plant pumping, weathering, leaching, and exceedance rate and hazard level (Fig. 4A, B, fig. S22) 211 

and found that weathering and plant pumping contribute substantially to the concentrations of 212 

As, Cd, Co, Cu in soil. Furthermore, SEM results verified that anthropogenic processes including 213 

mining and irrigation provided significant contributions for most of the toxic metals. Although 214 
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many effects are exerted via direct influencing pathways, a significant portion of the influences 215 

may be exerted indirectly (Fig. 4C). Indirect pathways account for 96%, 87%, 62%, and 62% of 216 

the net effect of mining on hazard level for As, Cd, Co, and Cu. These SEM results were in good 217 

accordance with the complex importance features of the machine learning models (Fig. 4D), and 218 

support our hypothesis that soil toxic metal enrichment is governed by the interplay of a wide 219 

range of biogeophysical and socioeconomic variables at broad spatiotemporal scales.  220 

 221 

Discussion  222 

Our model results show that soil contamination is occurring on a global scale, posing significant 223 

risks to both ecosystems and human health (7, 46), and threatening water quality and food 224 

security (6, 8). The model prediction includes both known soil pollution areas and previously 225 

undocumented areas of concern (fig. S23-S24). Some of these regions, such as Southern China 226 

and the Middle East, have been reported previously, but we were able to delineate the risk zones 227 

continuously on a global scale. Our machine learning models used data from the public domain 228 

to provide an assessment of regional soil pollution, and the results show that the technique is a 229 

useful screening tool that can complement traditional soil pollution mapping methods. There is 230 

an ongoing global initiatives on soil pollution prevention and restoration under the United 231 

Nations Environment Programme (UNEP) and the FAO (35, 47). Our results suggest that 232 

international aid should be allocated to facilitate soil pollution surveys in data-sparse regions 233 

such as Sub-Saharan Africa.  234 

 235 

Recent large-scale studies in Europe found a mysterious trend North of the 55o latitude line, 236 

which demarcates high-metal soils in the south from the low-metal soils in the north (11, 48). 237 

This phenomenon had been attributed to the coincidental match with the maximum extent of the 238 

last glaciation; however, the overall mechanism and drivers remain unclear. Our results now 239 

reveal that the toxic metal-enriched area across southern Europe is part of a more extensive 240 

trans-continental metal-enriched corridor spanning across low latitude Eurasia (Fig. 1A). We 241 

postulate that this corridor of long-lasting legacy of human influence was formed due to strong 242 

weathering of metal-enriched parent rocks (12, 49) and plant-pumping effects (13, 17), a lower 243 

degree of leaching associated with precipitation and terrain (12), and a long-history of mining 244 

and smelting activities occurring since ancient civilizations began (8).  245 

 246 

Our models were validated using a series of uncertainty analyses (26) (figs. S18-S21). Mapping 247 

the extent of spatial extrapolation showed that our dataset provides a good coverage of most 248 

environmental conditions, with the least represented pixels and highest proportion of 249 

extrapolation in Southeast Asia, Russia, and Africa. Due to lack of sampling data in developing 250 

countries and remote regions, our model still has relatively high degrees of uncertainty in 251 

northern Russia, central India, and Africa (fig. S2). Moreover, metal concentrations in soil have 252 

high spatial heterogeneity and may vary significantly over short distances. The present study is 253 

based on average metal concentrations on a 10-km grid, which is more reflective of diffusive and 254 

regional pollution rather than site specific conditions. The data may be sufficient for risk 255 

screening purposes but are inadequate to support risk mitigation. Soil remediation needs to rely 256 

upon site-specific delineation of lateral and vertical extent of soil pollution, as well as a better 257 

understanding of metal sources, fate and transport dynamics, and bioavailability (12).   258 

 259 

Soil pollution can have a profound impact on global food security and public health. For the 260 

millions of people making a living on the 14% to 17% of globally polluted cropland, the 261 
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bioaccumulation of toxic metals in crops and farm animals can affect biodiversity and 262 

productivity, cause detrimental health effects, and exacerbate poverty. The collateral effects on 263 

the global food chain are unknown at this time, especially in the context of how global trade 264 

dynamics may affect the distribution of contaminated agricultural products. These large areas of 265 

toxic metal enrichment are expected to continue to increase due to the growth in demand for 266 

critical metals required to support the net zero ‘green transition’ and the development of 267 

photovoltaic devices, wind turbines, and electric vehicle batteries (50, 51). We hope that the 268 

global soil pollution data presented in this report will serve as scientific alert for policy makers 269 

and farmers to take immediate and necessary measures to better protect the world’s precious soil 270 

resources. 271 

 272 
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 626 

Fig. 1. Global soil pollution by toxic metals exceeding agricultural threshold (AT). (A) 627 

Aggregate distribution of exceedance of arsenic, cadmium, cobalt, chromium, copper, nickel, 628 

and lead; color code shows the maximum probability of exceedance among the seven metals. (B-629 

C) zoomed-in sections of globally important food production areas. (D) Predicted Cd exceedance 630 

rates and average soil pH indicative of Cd mobility in the major rice export countries. Country 631 

abbreviation: IN = India, TH = Thailand, VN = Vietnam, PK = Pakistan, CN = China, US = 632 

United States, BR = Brazil, PY = Paraguay, EU = European Union, AR = Argentina.   633 

 634 

Fig. 2. Global distribution of soil toxic metals exceeding human health and ecological 635 

threshold (HHET). (A) Map of metal concentration exceedance. (B) Population density in areas 636 

with >0.5 probability of metal exceeding ecological and human health threshold. (C) Combined 637 

soil pollution by toxic metals, with line width in the Sankey diagram showing the proportion of 638 

all dual comingled pollution. (D) Density histogram showing the relative frequency of 639 

exceedance probability of various continents, adjusted by area of each continent. 640 

 641 

Fig. 3. Natural and anthropogenic drivers of soil metal exceedance. (A) Global distribution 642 

of subtropical monsoon (SM) and hemiboreal (HB) climate zones. (B) Exceedance rate in global, 643 

SM, and HB climate zones. (C) Exceedance rate increases as precipitation increases. (D) 644 

Exceedance rate decreases as ground frost frequency increases. (E) Global distribution of hilly 645 

mountain areas (HMA), with <2% of area sloped between 0.005 and 0.02, and >10% of area 646 

sloped between 0.3 and 0.45, and elevation >1,000 meter above mean sea level. (F) Exceedance 647 

rate in HMA is significantly higher than global average. (G) Exceedance rate decreases as 648 

proportion of flat land increases. (H) Exceedance rate increases as elevation increases. (I) Global 649 

distribution of irrigated and mineral rich regions (IMR), with proportion of irrigation exceeding 650 

90% and ores and metals imports over 5% of merchandise imports (MI). (J) Exceedance rate in 651 

IMR compared with global average. (K) Exceedance rate increases as the proportion of irrigation 652 

increases. (L) Exceedance rate increases as the proportion of ores and metals imports increases. 653 

Regression lines are shown in C, D, G, H, K, L, with “L” showing linear regression, and “E” 654 

showing exponential regression. Error bars represent 95% confidence interval derived from 655 

Bootstrap method. 656 

 657 

Fig. 4. Relationships among soil metal exceedance and underlying processes. (A) Structural 658 

Equation Modelling (SEM) of irrigation, mining, plant pumping effect, leaching, and weathering 659 

on exceedance rate and hazard level of As (n=2149, χ2=4.45, Bootstrap P = 0.41, root mean 660 

square error of approximation (RMSEA)=0.04, standardized root mean squared residual 661 

(SRMR) = 0.009, goodness-of-fit index (GFI) = 0.999). “***” denotes significant effect with p 662 

value less than 0.001; “**” denotes significant effect with p value less than 0.01; “*” denotes 663 

significant effect with p value less than 0.05; “.” denotes effect with p value less than 0.1. (B) 664 

SEM of Cd (n=2379, χ2 =0.57, Bootstrap P = 0.95, RMSEA=0.00, SRMR = 0.003, GFI = 665 

1.000). (C) Summed direct effect and indirect effects. The direct effect reflects the degree of 666 

standard deviation change in dependent variables with each one standard deviation change in a 667 

directly linked predictive variable, and indirect effect reflects the magnitude of associated change 668 
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via a indirect link. (D) Feature importance assessed by Shapley Additive Explanations (SHAP) 669 

(text S1.4.4). The larger the Shapley value, the more important a variable on the X axis is (38).  670 
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1 Materials and Methods 26 

1.1 Dataset  27 

1.1.1 Toxic metal species 28 

In the present study, we selected the following seven toxic metals and metalloids (herein toxic 29 

metals): arsenic, cadmium, chromium, cobalt, copper, nickel, and lead. These toxic metals were 30 

selected because they represent important soil pollutants, as evidenced by their toxicity, widely 31 

observed exceedance, and extensive anthropogenic activities causing influx into soil ecosystems. 32 

Mercury also meets these criteria, but it is excluded from the present study because the transport 33 

mechanism of mercury differs greatly from the other heavy metal(loid)s due to the volatility of 34 

elemental mercury. Additional information and rationale for each metal is provided below: 35 

Arsenic (As): Arsenic is a human carcinogen, and long-term exposure could lead to skin cancer, 36 

bladder cancer, and lung cancer (52). Rice accumulates up to 10 times more arsenic than other 37 

major food crops and is the major pathway of arsenic exposure through food (53). In China, 38 

arsenic contamination accounted for nearly 17% of all soil quality exceedances (10). Soil As was 39 

found to exceed health guidance level in 1157 of the 1867 national priority list sites identified by 40 

the USEPA (54). Soil arsenic maybe a factor contributing to endemic arsenicosis as was reported 41 

in Guizhou in China (55), Comarca Lagunera in Mexico (56), and Antofagasta in Chile (57). 42 

Cadmium (Cd): Cadmium is one of the most mobile and bioavailable heavy metal(loid)s in soil. 43 

It can be absorbed by crop plant roots and enter grains. Cadmium is a human carcinogen, and 44 

causes damages to human kidneys, skeletal and respiratory systems (58). In China, cadmium 45 

accounted for 43% of all soil quality exceedance based on a national soil quality survey (10). 46 

The accumulation of cadmium in rice is of particular concern for Asian countries where people 47 

tend to consume large amounts of rice products (59). In the US, soil Cd was found to exceed 48 

health guidance level in 1011 of the 1867 national priority list sites identified by the USEPA 49 

(54). 50 

Chromium (Cr): Chromium is a commonly used industrial mineral. It exists in two stable valence 51 

states: Cr(III) and Cr(VI). While Cr(III) is of low toxicity, Cr(VI) is highly toxic. Soil 52 

contamination by Cr(VI) can be caused by metal processing, tannery, steel welding, and pigment 53 

production. Environmental exposure of Cr(VI) can cause renal damage, allergy and asthma, and 54 

cancer of the respiratory tract (60). In the US, soil Cr was found to exceed health guidance level 55 

in 1122 of the 1867 national priority list sites identified by the USEPA (54). 56 

Cobalt (Co): Cobalt is a key element of lithium-ion batteries. It is also a by-product of copper 57 

and nickel mining and smelting. Although cobalt is an essential constituent of specific vitamins, 58 

excessive intake of Co can result in hearing and visual impairment, cardiovascular and endocrine 59 

impacts (61). In the US, soil Co was found to exceed health guidance level in 425 of the 1867 60 

national priority list sites identified by the USEPA (54).  61 

Copper (Cu): Copper is an important constituent of many enzymes, but excessive level of copper 62 

in soils can negatively impact plant growth, and accidental exposure can cause health effects in 63 

humans (62). In China, copper contamination accounted for nearly 13% of all soil quality 64 

exceedance (10). In the US, soil Cu was found to exceed health guidance level in 926 of the 1867 65 

national priority list sites identified by the USEPA (54). 66 

Nickel (Ni): Nickel is an essential element for plant growth, required for the functioning of a 67 

number of enzymes such as urease. However, excessive nickel uptake by plants can result in 68 

phytotoxicity in plants (63). Nickel compounds have also been classified as a human carcinogen, 69 

and nickel exposure by sensitized individuals can result in skin allergy (64). In China, nickel 70 
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contamination accounted for nearly 30% of all soil quality exceedances  (10). In the US, soil Ni 71 

was found to exceed health guidance level in 860 of the 1867 national priority list sites identified 72 

by the USEPA (54). 73 

Lead (Pb): Lead is one of the chemicals of greatest public health concern to the World Health 74 

Organization (65). Damage caused by lead exposure to child intellectual development is 75 

irreversible, with even low-level exposure linked to impaired neurological development and 76 

reduced IQ (66). A recent population-based cohort study in the US showed that the attributable 77 

percentage of blood Pb level (BLL) to all-cause mortality was revealed to be 18%, or an 78 

estimated 0.4 million deaths per year in the US, thus, making Pb exposure comparable to tobacco 79 

smoke as a major cause of mortality (67). In China, lead contamination accounted for nearly 9% 80 

of all soil quality exceedance  (10). In the US, soil Pb was found to exceed health guidance level 81 

in 1287 of the 1867 national priority list sites identified by the USEPA (54).  82 

 83 

1.1.2 Toxic metal concentrations 84 

A systematic literature search (fig. S1) was conducted to synthesize a global database of soil 85 

toxic metal concentrations (last updated on September 16th, 2024). The following keyword 86 

combination was used: TOPIC: ("soil" OR "land" OR "geochem*") AND TOPIC: ("Spatio 87 

temporal" OR "regional scale" OR "provincial" OR "province" OR "county" OR "mapping" OR 88 

"map" OR "spatial distribution" OR "spatial variability" OR "spatial variation" OR "spatial 89 

interpolation" OR "hectare" OR "acre" OR "km" OR "principal component analysis" OR 90 

"kriging" OR "GIS" OR "multi-site" OR "multiple sites" OR "forest sites") AND TOPIC: 91 

("metal*" OR "cadmium" OR "cd" OR "cobalt" OR "copper" OR "nickel" OR "chromium" OR 92 

"arsenic" OR “Pb” OR "soil pollut*" OR "soil contam*" OR "trace element" OR "toxic 93 

element") NOT TOPIC: ("marine" OR "ocean"). The search was conducted using the Web of 94 

Science tool, covering the following databases: Web of Science Core Collection, MEDLINE, 95 

Data Citation Index, Biosis Previews, Inspec, SciELO Citation Index, Chinese Science Citation 96 

Database, KCI-Korean Journal Database. Articles and reviews published in English were 97 

retrieved for further screening. Based on the peer-reviewed studies, a snowball method from the 98 

references of relevant papers were used to identify additional database own by pertaining 99 

government agencies. We used broad search terms to locate studies across a wide range of 100 

geographic areas, which resulted in a large number of initial search results requiring screening 101 

and paper downloading. Among others, the LUCAS topsoil dataset used in this work was made 102 

available by the European Commission through the European Soil Data Centre managed by the 103 

Joint Research Centre (JRC), http://esdac.jrc.ec.europa.eu/". 104 

A total number of 82,530 documents were identified by the search. The first round of screening 105 

was conducted based on title and abstract. Studies meeting the following criteria were retained: 106 

related to the pertaining toxic metals, focus on regional distribution rather than a specific 107 

pollution source, and the studied area is likely to exceed 10 km2. A total of 5,933 studies were 108 

retained during this step. Subsequently we intended to retrieve full text documents for all these 109 

studies, with success for 5218 studies. For the studies with full text obtained, toxic metal 110 

concentrations were extracted from the published literature or pertaining data source. A number 111 

of studies were further excluded due to the following reasons. Firstly, studies conducted before 112 

2000 are excluded. This criterion allows us to minimize the impact of temporal change in toxic 113 

metal concentrations attributed to anthropogenic activities. Secondly, studies that focus on 114 

contaminated sites are excluded. This is because such studies render limited regional 115 

implications, and including them in the present study may over-estimate the spatial scale of toxic 116 
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metal pollution. Nevertheless, it should be noted that this criterion also results in a limitation of 117 

our study, which is that it would underestimate the impact of such “hot spots”. Thirdly, studies 118 

are excluded if the studied area is too small (<10 km2) or sampling was not representative of the 119 

studied region. Fourthly, studies are excluded if the data quality is questionable. Methods 120 

accepted for quantifying toxic metals are laboratory based analytical procedures with rigorous 121 

quality assurance / quality control (QA/QC), including graphite furnace Atomic Absorption 122 

Spectroscopy (AAS), Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), and 123 

Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES). Some research studies 124 

used portable X-ray Fluorescence Analyzer (XRF) to quantify toxic metal concentrations; 125 

however, these results are considered to be of lower accuracy and therefore excluded from the 126 

database. The final database combines 1493 published studies, including 796,084 soil samples 127 

collected from 91 countries. The distribution of sampling sites is shown in fig. S2. 128 

The toxic metal concentrations from various studies were synthesized using 10-km x 10-km 129 

grids in EPSG:4326 (WGS84). The 10 km resolution was chosen because it is large enough to 130 

evaluate regional-scale spatial distribution rather than site specific pollution events, and it is also 131 

small enough to reasonably capture small-scale variation due to natural background, e.g. 132 

associated with differing parent materials and weathering conditions during geologic time spam, 133 

as well as different levels of anthropogenic pollution from atmospheric deposition and 134 

agricultural practice (6, 68). Some studies have collected soil toxic metal concentrations for soils 135 

of various depth. In the present study, only the most surficial soil concentrations were used. 136 

Moreover, soil concentrations measured for soil interval below 30 cm were systematically 137 

removed. This is consistent with most existing regional studies on soil pollution and soil 138 

properties (68, 69).   139 

The concentration data allowed us to identify predictive variables that influence the spatial 140 

distribution of toxic metals (see Section 1.1.3 and Section 1.3.1). These variables are then used to 141 

evaluate the probability of toxic metal concentration exceedance. In the present study, 142 

concentration data were binary-coded using the pertaining threshold values, with concentration 143 

lower than or equal to threshold assigned zero and concentration higher than threshold assigned 144 

one. This methodology is driven by the lack of abundant toxic metal concentration at high 145 

resolution. Preliminary modeling exercise shows that regression on toxic metal concentration has 146 

limited predictive power. Therefore, this study focuses on the prediction of toxic metal 147 

exceedance, and the pertaining thresholds are discussed in Section 1.2.  148 

1.1.3 Predictive variables  149 

A series of covariates were used to construct predictive models for the distribution of toxic metal 150 

exceedance. The variables were selected based on the following three criteria: 1) there is a 151 

potential causal relationship between the covariate and toxic metal concentrations, and the 152 

relationship may either be direct or indirect; 2) existing regional studies have shown that the 153 

category of variables have significant correlation with certain toxic metal concentrations; 3) there 154 

are available global database of the covariates which can be used to derive values to the spatial 155 

resolution of the present study. All variables were resampled and reprojected to match the 10 km 156 

resolution grid of the toxic metal distribution. Some variables were transformed to obtain 157 

numerical values, and some variables were re-calculated to obtain weighted average for each 10 158 

km x 10 km cell. More details are described below.  159 
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1.1.3.1 Geological variables  160 

The geochemical, mineralogical, and physical properties of soil parent materials, i.e. rock 161 

lithology types, play an important role in soil properties (13, 70). For example, cadmium 162 

concentrations in sedimentary rocks are typically higher than igneous rocks (17). We collected 163 

geological covariates from a global lithological map (GLiM) composed of 13 lithological classes 164 

with a spatial resolution of 0.5 degrees (71). The GLiM represents the rock types of the Earth 165 

surface with 1,235,400 polygons. The 13 lithological types include: evaporites, metamorphics, 166 

acid plutonic rocks, basic plutonic rocks, intermediate plutonic rocks, pyroclastics, carbonate 167 

sedimentary rocks, mixed sedimentary rocks, siliciclastic sedimentary rocks, unconsolidated 168 

sediments, acid volcanic rocks, basic volcanic rocks, intermediate volcanic rocks. For the present 169 

study, we derived the proportion of different lithological types for each 10 km cell, subsequently 170 

we used these 13 lithological variables as predictive variables.  171 

1.1.3.2 Climatic variables 172 

Soil is formed from the weathering of rocks, and the weathering process is quantitatively the 173 

most important source of natural toxic metals in soil (17). As the weathering process is largely 174 

affected by climatic conditions, climatic variables such as temperature, precipitation, frost, and 175 

evaporation may play a critical role in determining soil toxic metal concentrations (72). In the 176 

present study, we collected climatic data from CRU TS v. 4.05, which was developed and 177 

improved principally by the UK's Natural Environment Research Council (NERC) and the US 178 

Department of Energy. CRU TS was generated by the interpolation of monthly climate data on 179 

0.5° × 0.5° grid (73). The data of 9 covariate layers, including diurnal temperature range (DTR), 180 

ground frost frequency (GFR), near-surface temperature (TMP), near-surface temperature 181 

maximum (TMX), near-surface temperature minimum (TMN), potential evapotranspiration 182 

(PET), precipitation (PRE), vapour pressure (VAP), and wet day frequency (WET) in the time 183 

period of 2001 to 2020 were used, and their values of maximum, minimum, mean, median and 184 

standard deviation across the 20 years were calculated to capture the most predictive climate 185 

variables. To account for the effects of plant pumping, we also included transpiration data into 186 

models. This dataset was developed by Zhang et al through robust diagnostic models, which 187 

covers the period of 1981 to 2012 (74). We calculated the aforementioned five statistical 188 

measures using data from 2001 to 2012 and incorporated them into the models. 189 

1.1.3.3 Soil texture and basic physico-chemical properties  190 

Soil texture such as clay content and soil physico-chemical properties such as soil organic 191 

content have been widely used as co-variates to predict the regional distribution of toxic metals 192 

in soil (24, 25, 75-78). We collected data regarding soil texture and basic physico-chemical 193 

properties from Harmonized World Soil Database (HWSD) v 1.2 (79). HWSD is a result of the 194 

joint efforts of Food and Agriculture Organization of the United Nations (FAO), the International 195 

Institute for Applied Systems Analysis, ISRIC-World Soil Information, Institute of Soil Science, 196 

Chinese Academy of Sciences and Joint Research Centre of the European Commission. It 197 

contains over 15 000 different soil mapping units and the layer has a spatial resolution of 30 arc-198 

seconds. In the present study, we used 4 variables for soil texture: topsoil gravel content, topsoil 199 

sand fraction, topsoil silt fraction, and topsoil clay fraction. For the basic physicochemical 200 

properties, 12 variables were used: topsoil bulk density, reference bulk density, topsoil organic 201 

carbon, topsoil pH, topsoil CEC (clay), topsoil CEC (soil), topsoil base saturation, topsoil TEB, 202 

topsoil calcium carbonate, topsoil gypsum, topsoil sodicity, topsoil salinity.  203 
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1.1.3.4 Topography  204 

Land topography affects soil-forming rock weathering processes, and it also affects how surface 205 

runoff accumulates and infiltrates (40). It would influence how heavy metal and metalloid 206 

elements are leached out of rock/soil in one place, and then adsorbed and accumulated in soil at 207 

another place (17, 80). Therefore, topographic parameters may be used as predictors for regional 208 

soil pollution by toxic metals (23, 81). In the present study, we collected elevation and slope data 209 

from the Global Terrain Slope and Aspect Dataset (82). The dataset has a resolution of 5 210 

minutes. In this dataset, slope gradient is divided into 8 types: 0 % ≤ slope ≤ 0.5 %, 0.5 % < 211 

slope ≤ 2 %, 2 % < slope ≤ 5 %, 5 % < slope ≤ 10 %, 10 % < slope ≤ 15 %, 15 % < slope ≤ 212 

30 %, 30 % < slope ≤ 45 %, Slope > 45 %. The numerical value is expressed as the percentage of 213 

each slope type times 1000. 214 

1.1.3.5 Socioeconomic variables 215 

Socioeconomic indicators, especially those related to agricultural and industrial production, are 216 

important predictors of soil pollution (6, 25, 68). Anthropogenic sources account for the majority 217 

of atmospheric emission of various toxic metals (13, 15), which is a main contributor of regional 218 

soil pollution. While soil pollution may intensify when population density and industrial output 219 

grow, the input of toxic metal may also decrease when countries become more developed and 220 

environmental governance strengthen. In Europe, the industrial input of cadmium peaked in the 221 

1960s and has decreased since then (17). To capture the complex dynamics revolving around 222 

anthropogenic activities, we collected a series of variables associated with economic and social 223 

development for model building. The gross domestic product (GDP) and population density data 224 

were obtained from the Socioeconomic Data and Applications Center initiated by NASA. GDP 225 

data contain two layers for 1990 and 2025 with a special resolution of a 15 × 15 minute grid 226 

(83). For population density, we used the Gridded Population of the World (GPWv4), Version 4: 227 

Population Density Adjusted to Match 2015 Revision UN WPP Country Totals, Revision 11 for 228 

2000, 2005, 2010, 2015 and 2020, at 2.5 arc-minute resolution (84). We also collected 5 country-229 

level variables from the World Bank: ore/metal exports, mineral rents, mineral depletion, 230 

ores/metals imports and mortality caused by road traffic injury. The covariate, adjusted savings 231 

for mineral depletion, were normalized by the area of country. All the covariates were resampled 232 

to a 10 km × 10 km grid.  233 

Land use type is a proxy of various anthropogenic activities which correlates with toxic metal 234 

input processes, and maybe used as a co-variate of soil pollution (25, 85-87). Land cover data 235 

were collected from the Land Cover CCI Climate Research Data Package (CRDP) provided by 236 

the European Space Agency (ESA). These data packages contain the annual land-use map from 237 

1992 to 2015 at a 300-meter resolution. We selected the data from 2015 to construct a predictive 238 

variable for land use. The land cover is divided into 22 types in the original data, and we 239 

reorganized it to construct 5 land cover related variables, including agricultural land use, bare 240 

areas, forest land use, settlement land use, and other vegetation cover. We calculated the 241 

percentage of different land-cover types within the 10-kilometer grid. 242 

Many existing studies have shown that both inorganic and organic fertilizer production and 243 

application are important sources of soil heavy metals (17, 21). Therefore, we used nitrogen 244 

fertilizer application, nitrogen in manure production, phosphorus fertilizer application, and 245 

phosphorus in manure production data derived from Global Fertilizer and Manure, Version 1 246 

Data Collection, to quantify the influence of fertilizer on soil contamination (88). The dataset has 247 

a special resolution of 0.5 degrees. Agricultural land irrigation is also indicative of the intensity 248 
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of agricultural activity, and irrigation with contaminated runoff can cause heavy metals 249 

accumulation in soil. We used the percentage of irrigated area, the percentage of irrigated area 250 

with groundwater, and the percentage of irrigated area with surface water from the Global Map 251 

of Irrigation Areas Version 5, developed by FAO as predictive variables (89). The resolution of 252 

these raters was 5 minutes. 253 

Atmospheric deposition is known as an important source of heavy metals in soil on a regional 254 

scale (90, 91). We used the global power plant emission database developed by Tong et al, which 255 

includes CO2 and air pollutant emissions (SO2, NOx and primary PM2.5) from the main power 256 

plant in 231 countries or regions (92). The four covariate grids are at a special resolution of 0.1 257 

degrees. These variables do not directly represent toxic metal deposition; however, they may 258 

serve as a proxy of toxic metal deposition.  259 

1.2 Regulatory thresholds  260 

Regulatory thresholds were obtained from 11 countries, including Austria (93), Belgium (93), 261 

Canada (94), China (95, 96), Denmark (93), Finland (93), France (93), Germany (93), Italy (93), 262 

Netherland (93), and the United States (97). We have included both screening values, which 263 

usually trigger site-specific health risk assessment, and intervention values, which usually 264 

mandates cleanup efforts. Table S1 summarize these threshold values. The regulatory thresholds 265 

vary by orders of magnitude in different countries, for different land use, and under different soil 266 

conditions (Table S2). In the present study, we intend to be moderately conservative, and we 267 

have selected the 25 percentile values for the purpose of the modeling. A separate set of 268 

thresholds were derived for agricultural soils, as a smaller number of countries have such 269 

thresholds available. As Table S1 shows, the agricultural thresholds tend to be similar or lower 270 

than the thresholds for human and ecological health, and Cd has the most significant difference, 271 

i.e. 6 mg/kg for human health and ecological threshold versus 1 mg/kg for agricultural threshold. 272 

Soil concentration data were converted to binary data based on the selected regulatory 273 

thresholds, using the following Inference method.  274 

1.3 Exceedance inference  275 

Here we consider that each 10 km x 10 km grid consists of many smaller grids, and whether the 276 

true toxic metal concentration in each smaller grid exceeds the above threshold follows a 277 

Bernoulli distribution, which is a common discrete distribution categorized as “exceed” or “not 278 

exceed” (98). When deriving whether toxic metal concentration in a target area exceeds a 279 

threshold, existing large-scale studies have mainly used three different treatment methods. 280 

Firstly, some studies used the maximum concentration in each pixel to derive whether it exceeds 281 

the threshold (99), which renders a conservative and very likely overestimate of exceedance. 282 

Secondly, some other studies used the arithmetic or geometric mean in each pixel to derive 283 

whether it exceeds the threshold (11, 14). Thirdly, some studies used a simple proportion of 284 

samples exceeding threshold to represent the probability of exceedance (32, 100). In the present 285 

study, we used arithmetic mean to represent each pixel because: 1) it would reduce the likelihood 286 

of overestimating exceedance in comparison with using maximum concentrations; 2) it better 287 

represents the “average” exposure scenario than a geometric mean; and 3) it reduces the 288 

likelihood of overestimating exceedance rate with the simple proportion of sample exceedance 289 

(see detailed inference below and Table S8). As each 10 km x 10 km grid maybe covered by 290 

different studies, a synthesis procedure has been employed to integrate data from various 291 

sources, using the following equations: 292 

 293 
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𝑐𝑖,𝑗 =
∑ 𝑐𝑙,𝑗 ∙

𝐴𝑖

𝐴𝑙
∙ 𝑛𝑙,𝑗𝑙

∑
𝐴𝑖

𝐴𝑙
∙ 𝑛𝑙,𝑗𝑙

 (1) 294 

where ci,j is the average toxic metal concentration in grid i for toxic metal j; cl,j is the average 295 

toxic metal concentration in study l for toxic metal j;  𝐴𝑖 denotes the size of the land area in the 296 

ith cell covered by the lth study; 𝐴𝑙 denotes the total area covered by the lth study; nl,j is the total 297 

sampling points in the lth study for the toxic metal j. The standard deviation of toxic metal 298 

concentrations in each grid was derived using the following equation:   299 

𝑠𝑡𝑑𝑖,𝑗 =

√∑ (𝑠𝑡𝑑𝑙,𝑗 ∙
𝐴𝑖

𝐴𝑙
∙ 𝑛𝑙,𝑗)

2

𝑙

∑
𝐴𝑖

𝐴𝑙
∙ 𝑛𝑙,𝑗𝑙

 (2)
 300 

where stdi,j is the standard deviation of toxic metal concentration in grid i for toxic metal j; stdl,j 301 

is the standard deviation of toxic metal concentration in study l for toxic metal j. For grids with 302 

access to individual toxic metal concentrations at each sampling point, or studies covering no 303 

more than one grid, the above equations were directly used. For studies covering a large area, to 304 

avoid overestimating model accuracy owing to spatial autocorrelation, only 30% of the grids in 305 

each study area were randomly selected for modeling. Moreover, the exceedance state was 306 

derived for each randomly selected grid based on the following inference procedure. According 307 

to preliminary analysis of our dataset as well as previous studies, soil toxic metal concentrations 308 

tend to follow positively skewed distribution, often approximating lognormal distribution, 309 

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑖,𝑗 , 𝜎𝑖,𝑗), which is also why some existing studies used geometric mean rather than 310 

arithmetic mean to derive exceedance rate. The parameters of the log-normal distribution, 𝜇𝑖,𝑗 311 

and 𝜎𝑖,𝑗 can be estimated based on the following equations:  312 

𝜇𝑖,𝑗 = ln(𝑐𝑖,𝑗) −
1

2
(ln (

𝑠𝑡𝑑𝑖,𝑗
2

𝑐𝑖,𝑗
2

+ 1)) (3) 313 

𝜎𝑖,𝑗 = √ln (
𝑠𝑡𝑑𝑖,𝑗

2

𝑐𝑖,𝑗
2

+ 1) (4) 314 

Random sampling of each grid was then conducted using the above lognormal distribution, and 315 

repeated for 
𝐴𝑖

𝐴𝑙
∙ 𝑛𝑙,𝑗 times. Based on a preliminary analysis of the robustness of deriving 316 

exceedance probability with sampling data, a cut-off value of 15 sampling points was selected to 317 

decide whether only in-grid data were used or out-of-grid data were also used. For grids with less 318 

than 15 sampling points, out-of-grid search was conducted to locate the closest sampling points 319 

until total sampling points reach 15 or reach a 1o by 1o range. Weighted average was used to 320 

ascertain the concentration of toxic metal in the target grid. According to inverse distance 321 

weighting interpolation, we have assigned weights as the reciprocal of the distance from the 322 

point to the center of the grid (101). For in-grid data, we assumed their distance from the grid's 323 

center to be half the side length of grids owing to their congruent importance in determining the 324 

toxic metal’s level in the target grid. The selected sampling results were then used to derive the 325 

exceedance state for the corresponding grid. Finally, we obtained 30,122 data points for As, 326 

31,138 data points for Cd, 25,909 data points for Co, 31,026 data points for Cr, 31,500 data 327 

points for Cu, 30,509 data points for Ni and 31,792 data points for Pb. 328 
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We also conducted the following inference and analyses to compare differences among simple 329 

proportion of sample exceedance, the aggregated probability of exceedance within each grid, and 330 

the proportion of grids with average concentrations exceeding thresholds. The inference 331 

procedures of the aggregated probability of exceedance are as follows. The probability of 332 

whether the toxic metal concentration in a randomly selected 10 km x 10 km grid exceeds a 333 

threshold may also be assumed to equal to the percentage of smaller grids that are in “exceed” 334 

state. The probability of exceedance rate should follow Beta distribution, 𝐵𝑒𝑡𝑎(𝛼𝑖,𝑗 , 𝛽𝑖,𝑗) (98), 335 

and can be described by using the following equation: 336 

𝑓𝑃𝑖,𝑗
(𝑝) =  

1

𝐵(𝛼𝑖,𝑗 , 𝛽𝑖,𝑗)
 𝑝𝛼𝑖,𝑗−1(1 − 𝑝)𝛽𝑖,𝑗−1 (5) 337 

where p is the probability of toxic metal exceedance; 𝑓𝑃𝑖,𝑗
(𝑝) is the probability density function 338 

of toxic metal exceedance rate in the ith grid for the jth toxic metal; 𝛼𝑖,𝑗 is the shape parameter 339 

corresponding to smaller grids exceeding threshold, and represented by known sampling points 340 

in the larger grid exceeding threshold; 𝛽𝑖,𝑗 is the shape parameter corresponding to smaller grids 341 

not exceeding threshold, and represented by known sampling points in the larger grid not 342 

exceeding threshold. 𝐵(𝛼𝑖,𝑗 , 𝛽𝑖,𝑗) is defined by the following equation:  343 

𝐵(𝛼𝑖,𝑗 , 𝛽𝑖,𝑗) =
Γ(𝛼𝑖,𝑗)Γ(𝛽𝑖,𝑗)

Γ(𝛼𝑖,𝑗 + 𝛽𝑖,𝑗)
 (6) 344 

where Γ denotes Gamma function. When in-grid sample number exceeds 15, we can directly 345 

infer the probability of toxic metal exceedance using Equation 7: 346 

𝑃𝑖,𝑗 = 𝑃(𝑝 ≥ 𝑝𝑗) = ∫  
1

𝐵(𝛼𝑖,𝑗 , 𝛽𝑖,𝑗)
 𝑝𝛼𝑖,𝑗−1(1 − 𝑝)𝛽𝑖,𝑗−1

1

𝑝𝑗

𝑑𝑝 (7) 347 

where 𝑃𝑖,𝑗 is the probability of toxic metal’s exceedance rate over exceedance rate threshold pj. 348 

In this study, pj is 0.5 and when 𝑃𝑖,𝑗 exceeds 0.5, we consider the grid is in “exceed” state. 349 

For grids with less than 15 samples, we employed the following Bayesian Inference procedure 350 

(102, 103). The following search algorithm was used to include out-of-grid data. We started from 351 

grid 𝑖 and gradually increased search radius r until the number of sampling points in the 352 

generated search area H reach 15. The probability of toxic metal exceedance rate follows Beta 353 

distribution 𝐵𝑒𝑡𝑎(𝛼𝐻,𝑗 , 𝛽𝐻,𝑗), where 𝛼𝐻,𝑗 is sampling points in area H exceeding threshold; 𝛽𝐻,𝑗 354 

is sampling points in area H not exceeding threshold. According to Tobler’s First Law of 355 

Geography, near things are more related than distant things (104); therefore, this Beta 356 

distribution in the larger area H represents prior information for the probability distribution of 357 

toxic metal exceedance rate in the smaller 10 km by 10 km grid which holds close proximity to 358 

area H. On the other hand, the number of sampling points exceeding toxic metal threshold in the 359 

10 km by 10 km grid follows 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖,𝑗 , 𝑝𝑖,𝑗) distribution (98), and can be described by 360 

using the following equation: 361 

𝑓(𝑘, 𝑛𝑖,𝑗 , 𝑝𝑖,𝑗) = Pr(𝑋 = 𝑘) = (
𝑛𝑖,𝑗

𝑘
) 𝑝𝑖,𝑗

𝑘(1 − 𝑝𝑖,𝑗)𝑛𝑖,𝑗−𝑘 (8) 362 

where 𝑓(𝑘, 𝑛, 𝑝) is the probability density function of the number of sampling points exceeding 363 

toxic metal threshold; 𝑛𝑖,𝑗 is the number of sampling points in grid i for toxic metal j; k is the 364 

number of sampling points exceeding toxic metal threshold; 𝑝𝑖,𝑗 is the toxic metal exceedance 365 

rate.  Bayes theorem enables us to infer the posterior distribution based on experimental data and 366 

prior distribution (105):  367 



10 

 

𝑓(𝑝𝑖,𝑗|𝒟𝑖,𝑗) ∝ ℒ(𝒟𝑖,𝑗|𝑝𝑖,𝑗)𝑔(𝑝𝑖,𝑗) (9) 368 

where 𝑓(𝑝𝑖,𝑗|𝒟𝑖,𝑗) is the posterior distribution, ℒ(𝒟𝑖,𝑗|𝑝𝑖,𝑗) is the likelihood function, 𝑔(𝑝𝑖,𝑗) is 369 

the prior distribution and 𝒟𝑖,𝑗 represents experimental data which is actually the data in grid 𝑖. 370 

Based on Tobler’s Law the prior distribution of toxic metal exceedance rate in grid i 371 

approximates the distribution of exceedance rate in area H, namely 𝑔(𝑝𝑖,𝑗) = 𝐵𝑒𝑡𝑎(𝛼𝐻,𝑗 , 𝛽𝐻,𝑗). 372 

The likelihood function is given by the binomial distribution, namely ℒ(𝒟𝑖,𝑗|𝑝𝑖,𝑗) =373 

 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖,𝑗 , 𝑝𝑖,𝑗). Given that Beta distribution is a conjugate prior for Binomial distribution, 374 

we can get the posterior distribution of 𝑝𝑖,𝑗 given 𝒟𝑖,𝑗 as described by the following equation 375 

(106) .  376 

𝑓(𝑝𝑖,𝑗|𝒟𝑖,𝑗) =
ℒ(𝒟𝑖,𝑗|𝑝𝑖,𝑗)𝑔(𝑝𝑖,𝑗)

∫ ℒ(𝒟𝑖,𝑗|𝑝𝑖,𝑗)𝑔(𝑝𝑖,𝑗)𝑑𝑝𝑖,𝑗

= 𝐵𝑒𝑡𝑎(𝛼𝐻,𝑗 + 𝛼𝑖,𝑗 , 𝛽𝐻,𝑗 + 𝛽𝑖,𝑗) (10) 377 

Then, the derived Beta distribution is used to inference whether grid i is in in “exceed” state for 378 

toxic metal j based on Equation 7. Table S8 provides a comparison of these calculation results.  379 

It should be noted that the present study uses concentrations from regional studies which did not 380 

distinguish agricultural land from non-agricultural land. To assess errors that may be introduced, 381 

we used data from an EU-wide study to compare these two rates for different land use under the 382 

same thresholds. It was found that metal exceedance rate for agricultural land only increased 383 

slightly in comparison with that for all land uses, for both low and high threshold values (table 384 

S7), confirming the validity of this method. 385 

1.4 Modeling methods  386 

First, the entire dataset was randomly split into two subsets: 80% of the data was used as a 387 

training dataset to calibrate the model, and 20% of the data was used as an evaluation dataset to 388 

assess how well the calibrated model predicts. The general distributions of each soil toxic metal 389 

exceedance were similar in the training set and test set. We conducted preliminary experiments 390 

to explore the performance of ten machine learning models in predicting toxic metal’s 391 

exceedance based on all predictive variables, including extremely randomized trees (ERT), 392 

random forest (RF), Adaptive Boosting, Gradient Boosting, eXtreme Gradient Boosting, Support 393 

Vector Machine, Multi-layer Perceptron, K-Nearest Neighbors, Decision Tree and Logistic 394 

Regression with L2 regularization. Among these machine learning algorithms, the accuracy of 395 

ERT was the highest for all toxic metals. ERT is a decision tree-based ensemble method that is 396 

similar to RF but uses a different technique to build the individual trees (27). In an ERT model, a 397 

large number of decision trees are grown using random subsets of features, and the final 398 

prediction is made by aggregating the predictions of all the trees in the ensemble. Compared to 399 

RF, ERT introduces additional randomness in the tree-building process by using random splits 400 

for each node in the tree (107). Specifically, for each node in the tree, a random subset of 401 

features is selected and a random threshold is chosen for each feature to split the data. ERT is 402 

known to render robust and satisfying performance in classification for nonlinear issues and 403 

imbalanced dataset with faster training speed, and it has been widely used in a variety of research 404 

areas (108, 109). Based on assessment results from the preliminary experiments, ERT was 405 

selected as the optimal model to quantify the high-dimensional nonlinear relationship between 406 

toxic metals’ exceedance and the wide ranges of predictive variables.  407 

1.4.1 Feature selection  408 

Feature selection plays a critical role in model development, which aims to drop out redundant 409 

variables, and thus to avoid overfitting and multicollinearity, improve model performance and 410 



11 

 

interpretability, as well as to reduce computational costs (110). In the present study, we 411 

conducted a two-step method to ensure our final feature set did not involve redundant 412 

information (e.g multicollinearity). For the first step, recursive feature elimination (RFE) was 413 

conducted to select features from a collection of 116 predictive variables. RFE is a widely used 414 

method for feature selection, which iteratively removes the weakest variables according to the 415 

importance of features (111). Feature importance was evaluated by mean decrease in node 416 

impurity (MDI) via Gini index in this study, and features were removed iteratively until only one 417 

remained. The importance of features in the model can be determined according to the order in 418 

which variables were eliminated. The later they are removed from the model, the more important 419 

the feature is. Then, a feature set with the least number of features and highest accuracy in the 420 

model was selected out primarily. However, RFE can remove unimportant variables, but it 421 

cannot remove important variables with strong collinearity. Therefore, the second step was 422 

conducted to further eliminate redundant features. Pearson correlation coefficient (r) was 423 

calculated to provide us an insight of the collinearity strength among variables. Features with 424 

high correlation with others (r≥0.5) are identified as collinear variables. For collinear variables, 425 

we leave only the most important variables indicated by feature importance to avoid 426 

multicollinearity in models. Finally, for As, there were 25 features remaining in AT models, and 427 

20 features remained for Cd, 40 for Co, 18 for Cr, 13 for Cu, 10 for Ni, and 19 for Pb. The final 428 

selected features for each metal are shown in Attachment 2 of (38). 429 

 430 

1.4.2 Hyperparameter tuning 431 

Hyperparameter tuning was conducted following feature section. Five hyperparameters were 432 

optimized with grid search, including the number of trees, the maximum depth of the tree, the 433 

minimum number of samples required to be at a leaf node, the minimum number of samples 434 

required to split an internal node and the function to measure the quality of a split. Ranges of 435 

hyperparameters were carefully set to maximize model accuracy and avoid overfitting (see Table 436 

S3). As the dataset was imbalanced, a parameter was set to automatically balance sample weight 437 

for every tree grown, meaning minority class was assigned higher weight in the process of model 438 

development. During hyperparameter tuning, 5-fold cross-validation was conducted and F1-439 

score (see section 1.4.3 for definition), an effective metric for imbalanced dataset, was used to 440 

assess model performance. The optimal hyperparameter settings for different models were listed 441 

in Table S4. Models used to predict the toxic metal exceedance in agricultural land were trained 442 

with similar procedures.  443 

1.4.3 Model evaluation 444 

A group of scoring metrics were adopted to assess the performance of the calibrated models, 445 

including balanced accuracy (BA), sensitivity, specificity, F1 score, average precision (AP), the 446 

area under the Receiver Operating Characteristic Curve (AUC) and Cohen's kappa coefficient 447 

(KIA). The prediction results were divided into 4 types in terms of true positive (TP), false 448 

negative (FN), true negative (TN) and false positive (FP). Balanced accuracy was used to 449 

evaluate the model performance of classification, which is particularly useful when the input data 450 

is imbalanced.  451 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 (11) 452 

Sensitivity and specificity are the true positive and negative rates, respectively, and sensitivity is 453 

also known as recall.  454 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12) 455 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (13) 456 

F1 score is the harmonic mean of the precision and recall. Recall measures the proportion of true 457 

positives that are correctly identified by the models, while precision measures the proportion of 458 

identified positives that are actually positives. F1 score is regarded as an effective metric in 459 

evaluating model performance trained from imbalanced data. Therefore, it was not only used to 460 

evaluate the final model performance, but also used in feature selection and hyperparameter 461 

tuning. The closer the F1 score is to 1, the better the prediction performance of the model. 462 

𝐹1 = 2 ×
𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
=

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (14) 463 

AP is the area under precision-recall curve (see fig. S3). By taking into account both precision 464 

and recall, AP provides a more informative and reliable measure of performance than many other 465 

metrics that only consider one aspect of the model’s accuracy. AUC is the area under the 466 

Receiver Operating Characteristic Curve. It measures the overall quality of the model's 467 

predictions by quantifying the trade-off between the true positive rate (sensitivity) and the false 468 

positive rate (1-specificity) at various classification thresholds. Cohen's kappa is a common 469 

metric used to evaluate the agreement between the measured values and predicted results. When 470 

Cohen's kappa is higher than 0.8, it indicates that the model performance is excellent (112).  471 

KIA =  
𝑃𝑜𝑏𝑠 − 𝑃𝑒𝑥𝑝

1 − 𝑃𝑒𝑥𝑝
 (15) 472 

𝑃𝑜𝑏𝑠 =
𝑇𝑃 + 𝑇𝑁

𝑁
 (16) 473 

𝑃𝑒𝑥𝑝 =
(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃) + (𝐹𝑃 + 𝑇𝑁)(𝐹𝑁 + 𝑇𝑁)

𝑁2
 (17) 474 

where N is the number of samples in test set.  475 

Model performance for different toxic metals derived from ERT is shown in Table S6. Although 476 

the datasets are imbalanced for these toxic metals, where positive samples account for less than 477 

7% of the whole dataset, models present predictions with high accuracy for both positive and 478 

negative samples on the test dataset (20% of the data, which was randomly selected while 479 

maintaining the relative distribution of high and low values). The sensitivity of Cd-AT model is 480 

higher than 0.8, and the specificity of all seven toxic metals is closes to 1. The extremely 481 

imbalanced distribution of positive and negative samples may attribute to the relatively low 482 

sensitivity values for Cd in HHET model. Apart from sensitivity and specificity, comprehensive 483 

metrics also indicate that our models are well-trained. Co-AT obtains the highest KIA as 0.86, 484 

followed by Ni-AT (0.78), suggesting that the model performance is excellent. The KIA of other 485 

toxic metals for both AT and HHET models is higher than 0.6, showing that the models for these 486 

toxic metals are good. BA, F1-score and AP showed congruent patterns with KIA (Table S6).  487 

Data imbalance often hinders model training. In order to make precise and robust predictions, we 488 

have taken several measures to reduce the impact of unbalanced data sets on the model, 489 

including: (1) selecting ERTs, which is one of the most suitable algorithms for imbalanced data; 490 

(2) adjusting class weight inversely proportional to sample distributions in model training, which 491 

give more weight to positive samples; (3) employing F1-sore as scoring metrics in feature 492 

selection and parameter tuning, which provides a balanced measure of performance that takes 493 

into account both false positives and false negatives.  494 
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We used the best models to generate the probability of being polluted for 2,000,000 pixels and 495 

developed the global pollution probability maps for different toxic metals. We then excluded the 496 

pixels covered by desert and permafrost, with 1,290,000 pixels remained finally. The map of 497 

permafrost was obtained from National Science Foundation Arctic Systems Science Program 498 

(113). The dataset of desert is at 1:10 million scale, which was derived originally from the 499 

Florida Resources and Environmental Analysis Center's Physical Map of the World and held by 500 

Stanford currently (114). We then display the area affected by all toxic metals by calculating the 501 

maximum probability of all toxic metal exceedance in each pixel.  502 

 503 

1.4.4 Feature importance 504 

The importance of covariates used to predict the probability of toxic metal exceedance was 505 

estimated by Shapley Additive Explanations (SHAP). SHAP was developed based on the game 506 

theoretically optimal Shapley Value (SV) by Lundberg and Lee (115). Originally, SV provides a 507 

strategy to quantify the contributions of players to the total payout. In machine learning, players 508 

can be the covariates engaged in prediction models, and payout is the prediction value. SHAP is 509 

the average marginal contribution of an evaluated feature across all coalitions of other features. 510 

The basic idea underlying SHAP feature importance is that an important feature has a larger 511 

absolute SV. The importance is measured by the average of the absolute SHAP value of the 512 

feature across the data. The larger the value of SHAP, the more important the variable. 513 

Moreover, SHAP values provide us with insights of how a given feature affects probabilities of 514 

metal exceedance (116), and the results are displayed in supplementary data (38).  515 

1.5 Population at risk  516 

To estimate the affected population, we need to determine a probability cutoff to classify 517 

whether the grid is exposed to high or low levels of metals in soil. In this study, we used the 518 

cutoff which makes the predicted metal exceedance equal to observed metal exceedance (117). 519 

The cutoffs for different metals are displayed in Table S5. The area of affected land was 520 

calculated with the following equations. 521 

𝐴𝐿𝑖,𝑗 = {
𝐴𝑖 , 𝑃𝑟𝑜𝑏𝑖,𝑗 ≥ 𝑐𝑢𝑡𝑜𝑓𝑓  

0, 𝑃𝑟𝑜𝑏𝑖,𝑗 < 𝑐𝑢𝑡𝑜𝑓𝑓
 (18) 522 

where 𝐴𝐿𝑖,𝑗  is the area of affected land in the ith grid for the jth metal; 𝑃𝑟𝑜𝑏𝑖,𝑗 is the probability 523 

of the jth toxic metal’s exceedance in grid i. 524 

𝐴𝐿𝑗 = ∑ 𝐴𝐿𝑖,𝑗

𝑖

 (19) 525 

where 𝑨𝑳𝒋 denotes total area of affected land for toxic metal j. 526 

 527 

The number of affected population was derived based on the following equations. 528 

𝐴𝑃𝑖,𝑗 = {
𝑃𝑜𝑝𝑢𝑖, 𝑃𝑟𝑜𝑏𝑖,𝑗 ≥ 𝑐𝑢𝑡𝑜𝑓𝑓  

0, 𝑃𝑟𝑜𝑏𝑖,𝑗 < 𝑐𝑢𝑡𝑜𝑓𝑓
 (20) 529 

where 𝐴𝑃𝑖,𝑗  is the number of affected population in the ith grid for the jth metal; 𝑃𝑜𝑝𝑢𝑖 denotes 530 

the number of population in 2020 in grid 𝑖 , which was extracted from a dataset shared by 531 

Socioeconomic Data and Applications Center initiated by NASA (118).  532 

 533 

𝐴𝑃𝑗 = ∑ 𝐴𝑃𝑖,𝑗

𝑖

 (21) 534 
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where 𝑨𝑷𝒋 denotes the number of affected population for toxic metal j in the world.  535 

1.6 Agricultural land at risk  536 

The probabilities of metals’ exceedance in agricultural land are shown in Fig. 1A. The area of 537 

affected agricultural land by toxic metals was calculated by using the following equations. 538 

𝐴𝐴𝑖,𝑗 = {
𝐴𝑖 × 𝑅𝐴𝑖 × 𝑃𝑟𝑜𝑏𝑖,𝑗 , 𝑃𝑟𝑜𝑏𝑖,𝑗 ≥ 𝑐𝑢𝑡𝑜𝑓𝑓  

0, 𝑃𝑟𝑜𝑏𝑖,𝑗 < 𝑐𝑢𝑡𝑜𝑓𝑓
(22) 539 

where 𝐴𝐴𝑖,𝑗  is the area of affected agricultural land in the ith grid for the jth metal; 𝑅𝐴𝑖 is the 540 

ratio of agricultural land in grid 𝑖, which was derived from CRDP as introduced in Section 541 

1.1.3.5; 𝐴𝑖 is the area of grid 𝑖. The probability cut-off for determining whether a grid is at high 542 

risk or low risk is presented in Table S5. 543 

 544 

𝐴𝐴𝑗 = ∑ 𝐴𝐴𝑖,𝑗

𝑖

 (23) 545 

where 𝑨𝑨𝒋 denotes the number of affected agricultural land for toxic metal j in the world.  546 

1.7 Uncertainty analysis 547 

Several analyses were conducted to account for model uncertainties, including processes 548 

involved in data generation, feature selection, and model construction. Firstly, the entire dataset 549 

was randomly split into training and validation datasets, which renders uncertainty because 550 

different realizations of this process would result in different models. To analyze this 551 

uncertainty, we conducted a stratified bootstrap procedure for each toxic metal. In stratified 552 

bootstrapping, the subsets are constructed according to the proportion of each class, which helps 553 

to avoid the bias caused by resampling (119). For each metal, we performed 100 rounds of 554 

bootstrapping. The generated subsets were used to select features, build models, and estimate the 555 

probability of exceedance. Uncertainty was also introduced when we inferred whether toxic 556 

metals exceed thresholds in any specific 10 km x 10 km grid based on toxic metal concentration 557 

distribution in regional studies. Moreover, only 30% of grids were randomly selected for model 558 

development to minimize the impact of spatial autocorrelation on models. To account for these 559 

uncertainties, we generated 100 datasets with the same random procedure and build models to 560 

quantify the above uncertainties. We used the 200 model to general 95% confidence interval and 561 

calculate label stability (LS) to display the overall uncertainty mentioned above (Equation 24). 562 

The results of label stability are shown in fig. S18-19.  563 

𝐿𝑆𝑖,𝑗 =  
|𝐿0,𝑖,𝑗 − 𝐿1,𝑖,𝑗|

200
(24) 564 

Where 𝐿𝑆𝑖,𝑗 is the label stability of grid i for toxic metal j; 𝐿0,𝑖,𝑗 denotes the number of models 565 

infer that the ith grid is in a “not exceed” state for the jth toxic metal; 𝐿1,𝑖,𝑗 denotes the number of 566 

models infer that the ith grid is in a “exceed” state for the jth toxic metal. 567 

Extrapolation and upscaling are also sources of uncertainty because the relationship between 568 

predictive variables and dependent variables may no longer hold true outside of the range of the 569 

training dataset. To address this uncertainty, we assessed the extent of extrapolation in our 570 

models for the 1,290,000 cells across all the involved predictive variables for each metal. The 571 

maximum and minimum values of each variable were calculated in the sampling cell, and an 572 

interpolation range was generated for the variable. Then, the proportion of variables with values 573 

falling into the interpolation range across the 1,290,000 cells was calculated to indicate the extent 574 

interpolation for each cell. This map can also reveal the representativeness of our samples. The 575 
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results show that, for all metal, our samples covered most of the conditions. For all metals, 95% 576 

of cells have 90% of predictive variables inside the interpolation range (gis. S20-21). Mapping 577 

the extent of extrapolation highlighted that our dataset covered most environmental conditions, 578 

with the least represented pixels and highest proportion of extrapolation in the Southeast Asia, 579 

Russia, the central and eastern Africa, and the northern part of South America.  580 

Apart from the uncertainties quantified above, there are several processes that would introduce 581 

additional uncertainty in this study, which was difficult to quantify but still warrant attention. 582 

Firstly, samples are not evenly distributed and the samples in regions such as northern North 583 

America, northern Asia, and Africa are relatively limited, leading to increasing uncertainties in 584 

prediction results. Secondly, there is some survivor bias effect in our dataset. The data we used 585 

are selected from studies conducted on a regional scale, to avoid overestimation of metals’ 586 

exceedance caused by studies on pollution sources. However, researchers may tend to choose 587 

areas with naturally high metals’ concentration, and areas suffering from intensive industrial and 588 

agricultural activities. This causes our dataset to contain more regions with metals’ exceedance, 589 

which on the one hand reduced data imbalance, but on the other hand over-represented such 590 

regions. Thirdly, the spatial resolution of some predictive variables is low and most of these 591 

variables are predicted by models based on limited observed data, and these factors would also 592 

produce uncertainties.   593 

In this study, we used the soil sampling data collected at a time period of the past two decades. 594 

The input and output of toxic metals on an annual basis are usually much smaller than toxic 595 

metal stock in soil (17); however, the temporal change over decadal time scales is more 596 

uncertain. In Europe, archived samples from experimental stations in the UK, France, and 597 

Denmark showed that cadmium concentration increased by 1.3~2.6 times during the 19th and 20th 598 

century (120), suggesting an extremely slow rate of change on decadal time scale (4.3%~6.6% 599 

per decade). However, it should be noted that serious pollution and episodic events can occur 600 

over short temporal scales and cause rapid increases in toxic metal concentrations at local sites. 601 

Here, we focus on the regional average concentration and exclude contaminated sites; therefore, 602 

the use of toxic metal data over two decades should have limited impact on the robustness of our 603 

model.  604 

 605 

1.8 Statistical analysis 606 

We employed structural equation modelling (SEM) to elucidate the underlying causal pathways 607 

of a variety of factors (e.g climate factors, soil properties and socioeconomical indicators) 608 

influencing the distribution and exceedance of metals in soil. SEM is a widely-used statistical 609 

approach that integrates factor analysis and regression analysis enabling the simultaneous 610 

estimation of multiple complex relationships among variables and the testing of theoretical 611 

models (121). To enhance the conciseness and interpretability of our model, we selected several 612 

influential variables indicated through importance analysis and constructed five indexes to 613 

characterize the drivers and processes involved in the accumulation and transportation of metals. 614 

These five indexes are weathering, leaching, plant pumping, irrigation and mining. The 615 

weathering index is derived from the diurnal temperature range, precipitation, and clay content. 616 

The irrigation index comprises the percentage of area under actual irrigation and the percentage 617 

of area irrigated with surface water. The mining index includes mineral rents (% of GDP), 618 

exports of ores and metals, and imports of ores and metals. The leaching index is represented by 619 

wet day frequency, while the plant pumping index is indicated by potential evaporation. Prior to 620 
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index construction, we standardized the selected variables using the following equation to scale 621 

them within the range of 0 to 1 and eliminate the influence of extreme values. 622 

𝑥𝑖,𝑗
′ = {

𝑥𝑖,𝑗

�̅�𝑗 + 3 × 𝜎𝑖
, 𝑥𝑖,𝑗 ≤ �̅�𝑗 + 3 × 𝜎𝑗   

1, 𝑥𝑖,𝑗 > �̅�𝑗 + 3 × 𝜎𝑗

 (25) 623 

where 𝑥𝑖,𝑗
′  represents the standardized value of variable j and observation i, and 𝑥𝑖,𝑗 denotes 624 

original value.  �̅�𝑗 is the average of variable j and 𝜎𝑗 represents the standard deviation value of 625 

variable j. Then, the index is formed by adding the above standardized indicators and dividing it 626 

by the number of indicators.  627 

Apart from exceedance rate, we also explored how these factors influence hazardous levels. 628 

Hazardous level was examined by hazard quotient and hazard index, which are widely employed 629 

in health risk assessments developed by the United States Environmental Protection Agency 630 

(USEPA) (Equation 26-27) (122). In this process, risks associated with dermal contact, ingestion, 631 

and inhalation exposure pathways were all taken into consideration.  632 

𝐻𝑄 =
𝐶𝐷𝐼

𝑅𝑓𝐷
(26) 633 

𝐻𝐼𝑖,𝑗 = 𝐻𝑄𝑖𝑛𝑔,𝑖,𝑗 + 𝐻𝑄𝑖𝑛ℎ,𝑖,𝑗 + 𝐻𝑄𝑑𝑒𝑟,𝑖,𝑗 =
𝐶𝐷𝐼𝑖𝑛𝑔,𝑖,𝑗

𝑅𝑓𝐷𝑖𝑛𝑔,𝑗
+

𝐶𝐷𝐼𝑖𝑛ℎ,𝑖,𝑗

𝑅𝑓𝐷𝑖𝑛ℎ,𝑗
+

𝐶𝐷𝐼𝑑𝑒𝑟𝑖,𝑗

𝑅𝑓𝐷𝑖𝑛𝑔,𝑗 × 𝐴𝐵𝑆𝐺𝐼,𝑗

(27) 634 

where ing, inh and der represent the pathway of ingestion, inhalation and dermal contact, 635 

respectively.  𝐻𝑄𝑖,𝑗 refers to the Hazard quotient for observation i and metal j. HI stands for 636 

hazard index. CDI denotes chronic daily intake values, which are calculated by Equation 28 to 637 

30. RfD is reference doses, RfC denotes reference concentration, and ABSGI is gastrointestinal 638 

adsorption factor. Values of these parameters used in this study are presented in Table S10.  639 

CDIing,𝑖,𝑗 = Csoil,𝑖,𝑗 ×
IngR × EF × ED

BW × AT
× CF (28) 640 

𝐶𝐷𝐼𝑖𝑛ℎ,𝑖,𝑗 = 𝐶𝑠𝑜𝑖𝑙,𝑖,𝑗 ×
𝐸𝑇 × 𝐸𝐹 × 𝐸𝐷

𝑃𝐸𝐹 × 𝐴𝑇
×

1 𝑑𝑎𝑦

24 ℎ𝑜𝑢𝑟𝑠
(29) 641 

CDIder,𝑖,𝑗 = Csoil,𝑖,𝑗 ×
SA × AF × ABS × EF × ED

BW × AT
× CF (30) 642 

where Csoil is the concentration of metal in soil. The description and value used in this study of 643 

other parameters in Equation 28 to 30 can be found in Table S9. Hazardous level was log-644 

transformed to achieve normality. 645 

Before developing SEM, we initially assessed bivariate relationships among weathering, 646 

leaching, plant pumping, mining, irrigation, exceedance rate and hazardous level. We also 647 

calculated exceedance rates for various regions and different ranges of a given variable to 648 

explore the relationship among the various underlying processes that govern the accumulation of 649 

metal in soil. Based the exploratory analysis and existing theories on geological cycling of 650 

metals (8, 12-14, 17, 22), the most complete priori models were built. The pathways between 651 

variables that did not contribute substantial information were eliminated from the priori models. 652 

The final model was selected using Akaike information criterion. Since some residuals in the 653 

data did not strictly follow a normal distribution, we conducted the Bollen-Stine bootstrap test to 654 

ascertain the significance of the final model (a good fit is indicated by Bootstrap P > 0.10) (123). 655 

To provide a comprehensive evaluation of the models' performance, we also employed other 656 

three commonly used indicators: standardized root mean squared residual (SRMR < 0.08 657 

represents a qualified model), root mean square error of approximation (RMSEA < 0.05 stands 658 
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for a good fit) and goodness-of-fit index (GIF > 0.95 for satisfactory performance) (124). 659 

Another crucial capacity of SEM is the examination of both direct and indirect effects between 660 

variables of interest. To comprehensively interpret our final model, we calculated the direct and 661 

indirect effects of weathering, leaching, plant pumping, mining, irrigation on the exceedance rate 662 

and hazardous level through standardized path coefficient.  663 

 664 

2 Supplementary Discussion 665 

Previous studies in China and Europe reported higher exceedance rates (table S7), due to lower 666 

thresholds used in those studies (32, 100). To further compare a scenario with the same threshold 667 

values, we derived exceedance rate with data extracted from the EU study, which was created 668 

with a regression kriging method. Our exceedance rate estimates were slightly higher than those 669 

from the EU study, e.g. 1.4% and 4.2% from the EU study versus 2.9% and 5.1% from the 670 

present study. We attribute the discrepancy to the nature of the kriging method, which relies on 671 

spatial stationarity and is incapable of estimating robust variograms in the presence of extremely 672 

high values (125). We conducted supplementary analyses and found that the commonly used 673 

simple proportion method tends to yield high exceedance rates (table S7). Our machine learning 674 

results fall in between and may provide the best representation of local risks at a 10 km by 10 km 675 

grid spatial resolution.   676 
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 677 

3 Supplementary Figures  678 

 679 

 680 
Fig. S1  PRISMA 2020 flow diagram for searches of database.  681 
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 682 
Fig. S2  Distribution of soil samples. Samples are relatively densely distributed in China, 683 

Europe, and the US, and more sparsely distributed in Central and Northern Asia, Africa, 684 

Australia, and Latin America.  685 

  686 
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 687 

 688 
Fig. S3  Precision-recall curve and average precision for different metals. a) Models trained 689 

for human health and ecological threshold; b) Models trained for agricultural threshold.  690 

  691 
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 692 

 693 

 694 
Fig. S4 Probability of As exceedance of agricultural threshold. Red showing high probability, 695 

and blue showing low probability. High probability is predicted for southwestern China, south 696 

and southeastern Asia, western Africa, and central parts of south America.  697 

  698 
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 699 

 700 

 701 
Fig. S5 Probability of Cd exceedance of agricultural threshold. Red showing high 702 

probability, and blue showing low probability. High probability is predicted for south Asia, the 703 

Middle-East, eastern Africa, and central America. 704 

 705 

  706 
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 707 
Fig. S6 Probability of Co exceedance of agricultural threshold. Red showing high 708 

probability, and blue showing low probability. High probability is predicted for eastern Africa. 709 

  710 
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 711 

 712 

 713 
Fig. S7 Probability of Cr exceedance of agricultural threshold. Red showing high probability, 714 

and blue showing low probability. High probability is predicted for the Middle-East and 715 

subarctic Russia. 716 

 717 

  718 
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 719 
Fig. S8 Probability of Cu exceedance of agricultural threshold. Red showing high 720 

probability, and blue showing low probability. High probability is predicted for Zambia. 721 

  722 
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 723 

 724 

 725 
Fig. S9 Probability of Ni exceedance of agricultural threshold. Red showing high probability, 726 

and blue showing low probability. High probability is predicted for the Middle-East, eastern 727 

Africa, and Russia. 728 

  729 



27 

 

 730 
Fig. S10 Probability of Pb exceedance of agricultural threshold. Red showing high 731 

probability, and blue showing low probability. High probability is predicted for the Northern-732 

India, and southern China. 733 

 734 

  735 
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 736 
Fig. S11 Probability of As exceedance of human health and ecological threshold. Red 737 

showing high probability, and blue showing low probability. High probability is predicted for 738 

southwest China. 739 

  740 
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 741 

 742 

 743 
Fig. S12 Probability of Cd exceedance of human health and ecological threshold. Red 744 

showing high probability, and blue showing low probability. High probability is rarely predicted. 745 

 746 

  747 
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 748 
Fig. S13 Probability of Co exceedance of human health and ecological threshold. Red 749 

showing high probability, and blue showing low probability. High probability is predicted for 750 

south Asia, eastern Africa, and Zambia. 751 

  752 
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 753 

 754 

 755 
Fig. S14 Probability of Cr exceedance of human health and ecological threshold. Red 756 

showing high probability, and blue showing low probability. High probability is predicted for the 757 

Middle-East. 758 

 759 

  760 
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 761 
Fig. S15 Probability of Cu exceedance of human health and ecological threshold. Red 762 

showing high probability, and blue showing low probability. High probability is predicted for 763 

south Asia, Zambia, Chile, and central America. 764 

  765 
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 766 

 767 

 768 
Fig. S16 Probability of Ni exceedance of human health and ecological threshold. Red 769 

showing high probability, and blue showing low probability. High probability is predicted for the 770 

Middle-East, and eastern Africa. 771 

  772 
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 773 
Fig. S17 Probability of Pb exceedance of human health and ecological threshold. Red 774 

showing high probability, and blue showing low probability. 775 

 776 

 777 

 778 

 779 
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 780 
Fig. S18 Label stability for human health and ecological thresholds. (a) Total metals; (b) As; 781 

(c) Cd; (d) Co; (e) Cr; (f) Cu; (g) Ni; (h) Pb. High stability is observed for most of the areas, with 782 

some notable exceptions in discontinuous areas of northern Russia, south Asia, the Middle East, 783 

and eastern Africa; Grey=no data. 784 

 785 
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 786 
Fig. S19 Label stability for agricultural thresholds. (a) Total metals; (b) As; (c) Cd; (d) Co; 787 

(e) Cr; (f) Cu; (g) Ni; (h) Pb. High stability is observed for most of the areas, with most notable 788 

exceptions in northern Russia, but also discontinuous areas of east and south Asia, the Middle 789 

East, Africa, Latin America, and Australia; Grey=no data. 790 

 791 

 792 

 793 
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 794 
Fig. S20 Percentage of pixels interpolated for each variable. (a) As; (b) Cd; (c) Co; (d) Cr; (e) 795 

Cu; (f) Ni; (g) Pb. For most variables, the percentage is well above 95%, indicating good 796 

coverage.  797 

 798 

 799 
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 800 
Fig. S21 Proportion of variables interpolated for each pixel. (a) As; (b) Cd; (c) Co; (d) Cr; (e) 801 

Cu; (f) Ni; (g) Pb. For most areas, the percentage is well above 95%, indicating good coverage. 802 

 803 
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 804 

Fig. S22 Structure equation models for the other toxic metals. (a) Co; (b) Cr; (c) Cu; (d) Ni; 805 

(e) Pb. “***” denotes significant effect with p value less than 0.001; “**” denotes significant 806 

effect with p value less than 0.01; “*” denotes significant effect with p value less than 0.05, “.” 807 

denotes significant effect with p value less than 0.1. 808 
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 810 

 811 

 812 
Fig. S23 Undocumented areas with potential exceedance of agricultural threshold predicted 813 

by machine learning models. Many of these areas are located in Africa, South Asia, Russia, and 814 

the Mid-East. 815 

  816 
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 817 
Fig. S24 Undocumented areas with potential exceedance of human health and ecological 818 

threshold predicted by machine learning models. Many of these areas are located in Africa 819 

and southern America. 820 

  821 
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 822 

 823 

 824 

 825 
Fig. S25 Ancient cultures alone the metal enriched corridor. These cultures have largely 826 

overlapped with the metal enriched zone, and may have contributed to metal accumulation in 827 

history.  828 

  829 
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 830 
Fig. S26 Observed versus predicted metal exceedance rates. 831 

  832 
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 833 

 834 
Fig. S27 Predicted exceedance rates in countries of various income levels. 835 
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4 Supplementary Tables  836 

 837 

Table S1 Agricultural threshold (AT) and human health and ecological threshold (HHET) for soil pollution 838 

Toxic metals Agricultural threshold 
human health and 

ecological threshold 
Unit 

As 20 20 mg/kg 

Cd 1 6 mg/kg 

Cr 100 100 mg/kg 

Co 40 36.5 mg/kg 

Cu 91 100 mg/kg 

Ni 51 89 mg/kg 

Pb 100 200 mg/kg 

* the thresholds are derived from regulatory thresholds from 11 countries (see Table S2 and text S1.2) 839 

 840 

  841 
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Table S2 Regulatory thresholds from 11 countries (all units are in mg/kg) 842 

Country Threshold type As Cd Cr Co Cu Ni Pb  

Human health and ecological thresholds         

Austria Trigger value-residential 20 2 50  100 70 100  

Austria Intervention value-residential 50 10 250  600 140 500  

Belgium Screening level-special 45 2 130  200 100 200  

Belgium Screening level-residential 110 6 300  400 470 700  

Belgium Screening level-industrial 300 30 800  800 700 2500  

Belgium Cleanup level-nature area 45 2 130  200 100 200  

Belgium Cleanup level-residential 110 6 300  400 470 700  

Belgium Cleanup level-recreational 200 15 500  500 550 1500  

Belgium Cleanup level-industrial 300 30 800  800 700 2500  

Canada SQG-residential/parkland 12 10 64 50 63 45 140  

Canada SQG-commercial 12 22 87 300 91 89 260  

Canada SQG-industrial 12 22 87 300 91 89 600  

China Intervention level -residential 120 47  190 8000 600 800  

China Intervention level -industrial 140 172  350 36000 2000 2500  

China Screening level -residential 20 20  20 2000 150 400  

China Screening level -industrial 60 65  70 18000 900 800  

Denmark Ecotoxicological soil quality criteria 10 0.3 50  30 10 50  

Finland Threshold value 5 1 100 20 100 50 60  

Finland Lower guideline value 50 10 200 100 150 100 200  

Finland Upper guideline value 100 20 300 250 200 150 750  

France VDSS 19 10 65 120 95 70 200  

France VDI-usage sensible 37 20 130 240 190 140 400  

France VDI-usage non sensible 120 60 7000 1200 950 900 2000  

Germany Triggering level-Playing grounds 25 10 200   70 200  

Germany Triggering level-residential 50 20 400   140 400  

Germany Triggering level-Park 125 50 1000   350 1000  

Germany Triggering level-industrial 140 60 1000   900 2000  

Italy Limit values-residential 20 2 150 20 120 120 100  

Italy Limit values-industrial 50 15 800 250 600 500 1000  
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Country Threshold type As Cd Cr Co Cu Ni Pb  

Netherland Target value 29 0.8 100 9 36 35 85  

Netherland Intervention value 55 12 380 240 190 210 530  

US US-RSL-residential 0.68 71 120000 23 3100 1500 400  

US US-RSL-industrial 3 980 1800000 350 47000 22000 800  

          

 25 percentile 20 6 100 36.5 100 89 200  

          

Agricultural thresholds         

Austria Trigger value-agricultural 20 1 100  100 60 100  

Belgium Clean-up level-agricultural 45 2 130  200 100 200  

Canada SQG-agricultural 12 1.4 64 40 63 45 70  

China Screening level-agricultural * 30 0.45 237.5  131.25 52.5 126.25  

China Intervention level-agricultural * 143 2.625 987.5    650  

          

  25 percentile 20 1 100 40 91 51 100  

* represents average for paddy field and non-paddy field under various pH ranges 843 

 844 

 845 

  846 
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Table S3 Parameter tuning range 847 

Parameters Range 

n_estimators [1000, 2000,3000] 

max_depth [10,15,20] 

criterion ["gini","entropy"] 

min_samples_split [2, 5, 10] 

min_samples_leaf [1, 3, 8] 

 848 

  849 
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Table S4 Optimal hyperparameter settings for different metals 850 

 851 

Pollutant criterion Estimators 
Max 

depth 

Min 

Samples leaf 

Min samples 

split 

Human health and ecological thresholds 

As entropy 2000 20 1 2 

Cd gini 3000 20 1 2 

Co entropy 2000 20 1 2 

Cr entropy 1000 20 1 2 

Cu entropy 1000 20 1 5 

Ni entropy 2000 20 1 2 

Pb entropy 3000 20 1 10 

Agricultural thresholds 

As entropy 3000 20 1 5 

Cd entropy 1000 20 1 5 

Co entropy 2000 15 1 2 

Cr entropy 3000 20 1 2 

Cu entropy 1000 20 1 2 

Ni entropy 1000 20 1 2 

Pb entropy 2000 20 1 5 

 852 

  853 
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Table S5 Probability cut-offs to determine whether grids were affected by toxic metals 854 

Toxic 

metal 
Human health and ecological thresholds Agricultural thresholds 

As 0.55 0.66 

Cd 0.54 0.64 

Co 0.42 0.41 

Cr 0.51 0.51 

Cu 0.63 0.5 

Ni 0.57 0.54 

Pb 0.7 0.59 

 855 

  856 
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Table S6 Model performance of ERT for all toxic metals 857 

 As Cd Co Cr Cu Ni Pb 

Human health and ecological thresholds  

BA 0.87 0.81 0.88 0.87 0.85 0.89 0.81 

F1-score 0.75 0.66 0.82 0.79 0.71 0.79 0.62 

Sensitivity 0.76 0.63 0.76 0.75 0.71 0.79 0.62 

Specificity 0.99 1.00 1.00 0.99 1.00 1.00 1.00 

AUC 0.87 0.81 0.88 0.87 0.85 0.89 0.81 

KIA 0.74 0.65 0.82 0.78 0.71 0.79 0.61 

AP 0.80 0.63 0.84 0.83 0.78 0.83 0.59 

Agricultural thresholds  

BA 0.86 0.91 0.92 0.88 0.85 0.89 0.80 

F1-score 0.72 0.78 0.86 0.79 0.74 0.79 0.64 

Sensitivity 0.74 0.83 0.85 0.77 0.71 0.80 0.62 

Specificity 0.99 0.98 1.00 0.99 1.00 0.99 0.99 

AUC 0.86 0.91 0.92 0.88 0.85 0.89 0.80 

KIA 0.71 0.76 0.86 0.78 0.74 0.78 0.63 

AP 0.74 0.85 0.90 0.83 0.77 0.87 0.68 
BA represents balanced accuracy. AUC is the area under the curve of receiver operating characteristic. KIA means Cohen's kappa coefficient and AP denotes 858 

average precision. 859 

 860 

 861 

 862 

 863 

 864 

 865 
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Table S7 Soil toxic metal exceedance in European Union and China 867 

Region Study 
Estimation 

Method 

Threshold Value 

type 
Total As Cd Co Cr Cu Ni Pb 

Europea

n Union 

this 

study 

Machine 

learning 

Health risk 

Threshold 

 
20 6 36.5 100 100 89 200 

 Exceedance rate 2.9% 0.8% 0.1% 0.1% 1.2% 0.2% 1.5% 0.2% 

 Agricultural 

threshold 

 
20 1 40 100 91 51 100 

 
 Exceedance rate-

AT 
5.1% 0.6% 0.7% 0.0% 1.0% 0.4% 3.3% 0.6% 

Toth, 

2016a 

(100) 

Simple 

proportion of 

sample 

Threshold value 

 

5 1 20 100 100 50 60 

 
 Exceedance rate-

Agriculture  

58.1% 1 
       

 
 Exceedance rate-

All  

53.3% 1 
 5.5% 4.5% 2.7%    

 
 Lower Guidance 

value 

 
50 10 100 200 150 100 200 

  Exceedance ratel  6.2% 1 0.8%  0.38% 1.1%    

 
 Higher Guidance 

value 

 
100 20 250 300 200 150 750 

 
 Exceedance rate-

Agriculture  

2.6% 1 
       

 
 Exceedance rate-

All  
2.4% 1 

       

Toth, 

2016b 

(11)  

Regression 

kriging 
Threshold value 

 
5 1 20 100 100 50 60 

 Exceedance rate 28.3% 2 25.5% 0.3% 1.0% 0.5% 0% 3.9% 0.2% 

 Health risk 

threshold 3  

 
20 6 36.5 100 100 89 200 

 Exceedance rate 1.4% 2 0.1% 0.0% 0.1% 0.5% 0.0% 1.1% 0.0% 

 Agricultural 

threshold 3 

 
20 1 40 100 91 51 100 

 Exceedance rate 4.2% 2 0.1% 0.3% 0.0% 0.5% 0.0% 3.8% 0.0% 

China 
this 

study 

Machine 

learning 

Health risk 

Threshold 

 
20 6 36.5 100 100 89 200 

  Exceedance rate 13.8% 11.0% 0.2% 0.8% 5.2% 0.6% 0.2% 0.2% 
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Region Study 
Estimation 

Method 

Threshold Value 

type 
Total As Cd Co Cr Cu Ni Pb 

 
 Agricultural 

threshold 

 
20 1 40 100 91 51 100 

   Exceedance rate 12.8% 6.8% 4.2% 0.1% 4.1% 1.0% 2.1% 1.0% 

 
Chen, 

2015 

(32)  

Simple 

proportion of 

sample 

Grade 1 

threshold  

 

15 0.2 
 

90 35 40 35 

 Exceedance rate 66.8% 4 16.9% 27.7%  14.7% 15.8% 13.6% 20.0% 

 
Grade 2 

threshold 

 

30 0.6 
 

200 200 50 300 

 Exceedance rate 9.6% 4 4.0% 3.8%  1.3% 0.3% 6.1% 0.2% 

 

MEP, 

2014 

(10) 

Simple 

proportion of 

sample 

Soil quality 

standard 5 

 

30 0.3  250 150 50 300 

   Exceedance rate 11.8% 6 2.7% 7.0%  1.1% 2.1% 4.8% 1.5% 

 868 

1 This exceedance rate also includes exceedances of mercury, zinc, and vanadium 869 
2 This exceedance rate was derived using average toxic metal concentrations extracted from the TIF files provided by the study 870 
3 Thresholds used in the present study 871 
4 Combined exceedance was derived by adding individual toxic metal exceedance and multiply a factor derived from MEP, 2014 872 
5 The mean of standards for various pH range and soil type is listed.  873 
6 Combined exceedance was derived by subtracting exceedance rates of mercury, zinc, and organic pollutants from the overall exceedance rate 874 

 875 
 876 

 877 

  878 
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Table S8 Difference among three exceedance inference methods 879 

Potentially 
toxic 

elements 

Human health and ecological thresholds Agricultural threshold 

Simple proportion of 
sample exceedance 

Inference with 
aggregated 
probability1 

Inference with 
average 

concentration 

Simple proportion of 
sample exceedance 

Inference with 
aggregated 
probability1 

Inference with 
average 

concentration 

As 12.1% 4.8% 7.7% 12.1% 4.8% 7.7% 

Cd 0.8% 0.5% 0.9% 8.8% 7.2% 10.2% 

Co 3.8% 1.2% 1.4% 3.2% 1.2% 1.3% 

Cr 12.8% 5.7% 7.6% 12.8% 5.7% 7.6% 

Cu 3.2% 2.0% 2.5% 3.8% 2.1% 2.8% 

Ni 3.2% 3.2% 3.9% 10.1% 7.3% 9.0% 

Pb 2.7% 0.7% 1.2% 7.3% 2.1% 3.3% 
1This exceedance rate is calculated based on Beta distribution and Bayesian inference mentioned in Section 1.3.  880 

 881 
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Table S9 Parameters for health assessment of toxic metals through ingestion, inhalation and dermal pathways  883 

Parameters Discription Unit Value 

IngR Ingestion rate mg/day 100 

InhR Inhalation rate m3/day 20 

EF Exposure frequency Days/year 350 

ED Exposure duration Years 30 

BW Body weight kg 70 

AT Average timing Days 10950 

SA Skin area cm2 5700 

ABS Dermal adsorption factor No unit 
0.03 (As)  

0.001 (other metal) 

AF Adherence factor of soil mg/cm3/day 0.07 

PEF 
Particulate emission 

factor 
m3/kg 1.36×109 

CF units conversion factor kg/mg 1×10-6 

Source: (126, 127) 884 

  885 
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 886 

Table S10 Reference doses for different pathways  887 

Pollutants  Ingestion  Inhalation Dermal contact 

As 3.00×10-4 1.23×10-4 3.01×10-4 

Cd 1.00×10-3 1.00×10-3 1.00×10-5 

Co 3.00×10-4 6.00×10-6 - 

Cr 3.00×10-3 2.86×10-5 5.00×10-5 

Cu 4.00×10-2 - 1.20×10-2 

Ni 2.00×10-2 2.06×10-2 5.40×10-3 

Pb 3.50×10-3 3.52×10-3 5.25×10-4 

 888 

Source: (128) 889 

 890 


